An improved finite element formulation derived from the method of weighted residuals
DOI10.1016/0045-7825(78)90024-5zbMath0403.76001OpenAlexW1968071484MaRDI QIDQ1256355
Publication date: 1978
Published in: Computer Methods in Applied Mechanics and Engineering (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/0045-7825(78)90024-5
Fluid MechanicsGalerkin Weighted Residual MethodLeast Square Weighted Residual MethodReduced Integration
Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs (65N30) Software, source code, etc. for problems pertaining to fluid mechanics (76-04) Numerical methods for partial differential equations, boundary value problems (65N99)
Related Items (6)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Reduced integration, function smoothing and non-conformity in finite element analysis (with special reference to thick plates)
- An improved finite element formulation derived from the method of weighted residuals
- A degenerate solid element for linear fracture analysis of plate bending and general shells
- Quadratic finite element schemes for two-dimensional convective-transport problems
- Least square‐finite element for elasto‐static problems. Use of ‘reduced’ integration
- Local and global smoothing of discontinuous finite element functions using a least squares method
- Improved numerical integration of thick shell finite elements
- Reduced integration technique in general analysis of plates and shells
This page was built for publication: An improved finite element formulation derived from the method of weighted residuals