Théoremes d'existence pour des problèmes du calcul des variations du type: \(\text{Inf}\int^L_0f(x,u'(x))dx\) et \(\text{Inf} \int^L_0f(x,u(x),u'(x))dx\).
From MaRDI portal
Publication:1256725
DOI10.1016/0022-0396(79)90075-5zbMath0404.49001OpenAlexW1969266916MaRDI QIDQ1256725
Publication date: 1979
Published in: Journal of Differential Equations (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/0022-0396(79)90075-5
Related Items
Existence and uniqueness results for minimization problems with nonconvex functionals, Un problème issu de l'étude numérique d'un fil sans raideur soumis au frottement sec, Conditions nécessaires et suffisantes d'existence de solutions en calcul des variations. (Necessary and sufficient conditions for the existence of solutions in the calculus of variations), A uniqueness result for a class of non-strictly convex variational problems, Existence of minimizers for non-quasiconvex integrals, Teoremi di esistenza del minimo per funzionali non convessi del calcolo delle variazioni, Optimization of a prey-predator model with hysteresis and convection, On a classical problem of the calculus of variations without convexity assumptions, On the anti-plane shear problem in finite elasticity, Régularité de la solution d'un problème variationnel. (Regularity of the solution of a variational problem), Radially symmetric solutions of a class of problems of the calculus of variations without convexity assumptions, Existence theorems in optimal control problems without convexity assumptions, Existence of scalar minimizers for nonconvex simple integrals of sum type, Images of connected sets by semicontinuous multifunctions, Sur une équation quasilinéaire d'ordre 2 non elliptique. (On a quasilinear nonelliptic equation of second order), Existence and regularity for scalar minimizers of affine nonconvex simple integrals.
Cites Work