On the Stiefel-Baumgarte stabilization procedure
From MaRDI portal
Publication:1256837
DOI10.1007/BF01601940zbMath0404.65042MaRDI QIDQ1256837
Publication date: 1979
Published in: ZAMP. Zeitschrift für angewandte Mathematik und Physik (Search for Journal in Brave)
Hamiltonian SystemsError EstimatesSystems of Ordinary Differential EquationsNumerical Approximation of the Initial Value Problem
Numerical methods for initial value problems involving ordinary differential equations (65L05) Numerical investigation of stability of solutions to ordinary differential equations (65L07) Numerical analysis in abstract spaces (65J99)
Related Items (2)
The rate of error growth in Hamiltonian-conserving integrators ⋮ Towards a rigorous justification of the Stiefel-Baumgarte stabilization method
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Comparison theorems, numerical integration and satellite orbits
- The Hopf bifurcation and its applications. With contributions by P. Chernoff, G. Childs, S. Chow, J. R. Dorroh, J. Guckenheimer, L. Howard, N. Kopell, O. Lanford, J. Mallet-Paret, G. Oster, O. Ruiz, S. Schecter, D. Schmidt, and S. Smale
- Restricted Liapunov stability and stabilization of ordinary differential equations
- Stability of Kepler motion
- Stabilization of constraints and integrals of motion in dynamical systems
- Asymptotische Stabilisierung von Integralen bei gewöhnlichen Differentialgleichungen 1. Ordnung
- Comparison Theorems and Instability with Applications to Numerical Integration, Satellite Orbits and Averaging
- Stabilization by manipulation of the Hamiltonian
- Stabilization by modification of the Lagrangian
- Stabilized Kepler motion connected with analytic step adaptation
- Numerical stabilization of the differential equations of Keplerian motion
- Numerical stabilization of all laws of conservation in the many body problem
This page was built for publication: On the Stiefel-Baumgarte stabilization procedure