Harmonic estimation in certain slit regions and a theorem of Beurling and Malliavin
From MaRDI portal
Publication:1257576
DOI10.1007/BF02395063zbMath0406.31001OpenAlexW2057729330MaRDI QIDQ1257576
Publication date: 1979
Published in: Acta Mathematica (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/bf02395063
Harmonic, subharmonic, superharmonic functions in two dimensions (31A05) Potentials and capacity, harmonic measure, extremal length and related notions in two dimensions (31A15) Special classes of entire functions of one complex variable and growth estimates (30D15) Generalizations of potential theory (31C99)
Related Items (11)
Construction of a certain superharmonic majorant ⋮ A relation between two results about entire functions of exponential type ⋮ Uniform estimates of entire functions by logarithmic sums ⋮ Fonctions entières de type exponentiel comme multiplicateurs. Un exemple et une condition nécessaire et suffisante ⋮ Completeness of rational quotients in weighted \(L^ p-\)spaces on a circle ⋮ On the Martin boundary of a plane domain whose complement is situated on a straight line ⋮ La plus petite majorante surharmonique et son rapport avec l'existence des fonctions entières de type exponentiel jouant le rôle de multiplicateurs ⋮ Beurling–Malliavin multiplier theorem: The seventh proof ⋮ Harmonic analysis and spectral estimation ⋮ Existence of a Phragmén-Lindelöf function and certain quasianalyticity conditions ⋮ Weighted completeness of polynomials on the line for a strongly nonsymmetric weight
Cites Work
- On Fourier transforms of measures with compact support
- Weighted polynomial approximation on arithmetic progressions of intervals or points
- Weighted quadratic means of Hilbert transforms
- Über eine Ungleichung der Potentialtheorie
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: Harmonic estimation in certain slit regions and a theorem of Beurling and Malliavin