Inégalités à priori et estimation sous-elliptique pour \(\bar\partial\) dans des ouverts non pseudoconvexes
From MaRDI portal
Publication:1260287
DOI10.1007/BF01387078zbMath0412.35070MaRDI QIDQ1260287
Publication date: 1980
Published in: Mathematische Annalen (Search for Journal in Brave)
Full work available at URL: https://eudml.org/doc/163388
a priori estimatesholomorphic dimensiondelta-Neumann problemnon pseudo-convex domainssubelliptic estimation
A priori estimates in context of PDEs (35B45) Pseudoconvex domains (32T99) (overlinepartial)-Neumann problems and formal complexes in context of PDEs (35N15)
Related Items (3)
Application of Catlin's box construction to subellipticity of \(n-1\) forms ⋮ Percolation of estimates for \(\bar{\partial}\) by the method of alternating projections ⋮ Regularity at the boundary for \(\overline \partial\) on \(Q\)-pseudoconvex domains
Cites Work
- Estimations along components for the \(\bar{\partial}\)-Neumann problem for some classes of pseudoconvex domains in \(\mathbb{C}^ n\).
- Estimations pour \(\bar\partial\) dans des domaines non pseudo-convexes
- Pseudoconvex domains with real-analytic boundary
- Local analyticity for the \(\bar {\partial}\)-Neumann problem in completely decoupled pseudoconvex domains
- Subelliptic estimates for the \(\bar \partial\)-Neumann problem in C\(^2\)
- Pseudo-differential operators and non-elliptic boundary problems
- \(L^ 2\) estimates and existence theorems for the \(\partial\)-operator
- The D-Neumann problem
- Boundary behavior of \(\bar \partial\) on weakly pseudo-convex manifolds of dimension two
- Sufficient conditions for subellipticity on weakly pseudo-convex domains
- Local analytic hypoellipticity for □ b on nondegenerate Cauchy—Riemann manifolds
- Subellipticity on Pseudo-Convex Domains with Isolated Degeneracies
- The Neumann Problem for the Cauchy-Riemann Complex. (AM-75)
- A geometric characterization of points of type m on real submanifolds of \(\mathbb{C}^n\)
This page was built for publication: Inégalités à priori et estimation sous-elliptique pour \(\bar\partial\) dans des ouverts non pseudoconvexes