Iwasawa theory and \(p\)-adic Hodge theory
DOI10.2996/kmj/1138039701zbMath0798.11050OpenAlexW2048205489MaRDI QIDQ1261816
Publication date: 7 September 1993
Published in: Kodai Mathematical Journal (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.2996/kmj/1138039701
special values of \(L\)-series\(p\)-adic Hodge theoryanalytic zeta elementGalois module structuresIwasawa main conjecture for motivespartial \(L\)- functions
Zeta functions and related questions in algebraic geometry (e.g., Birch-Swinnerton-Dyer conjecture) (14G10) Special values of automorphic (L)-series, periods of automorphic forms, cohomology, modular symbols (11F67) (L)-functions of varieties over global fields; Birch-Swinnerton-Dyer conjecture (11G40) Zeta functions and (L)-functions of number fields (11R42) Iwasawa theory (11R23) Generalizations (algebraic spaces, stacks) (14A20)
Related Items
Cites Work
- On certain types of \(p\)-adic representations of the Galois group of a local field; construction of a Barsott-Tate ring.
- Class fields of abelian extensions of \(\mathbb Q\)
- Norm pairing in a two-dimensional local field
- Height pairings for algebraic cycles
- Higher regulators and values of \(L\)-functions
- Algebraic cycles and values of L-functions. II
- K-théorie des anneaux d'entiers de corps de nombres et cohomologie etale
- On the conjecture of Birch and Swinnerton-Dyer
- On \(\mathbb Z_{\ell}\)-extensions of algebraic number fields
- La conjecture de Weil. I
- Cohomologie Galoisienne. Cours au College de France, 1962-1963. 4e ed
- On higher p-adic regulators
- Notes on étale cohomology of number fields
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item