Experiment design in a bounded-error context: Comparison with D- optimality
From MaRDI portal
Publication:1262662
DOI10.1016/0005-1098(89)90006-XzbMath0686.62050OpenAlexW2035395596MaRDI QIDQ1262662
Publication date: 1989
Published in: Automatica (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/0005-1098(89)90006-x
identificationestimationnoise distributionmeasurement errorsmembershipD- optimalitynew optimality criterionnoise boundsnumber of measurements
Related Items
Minimum-volume ellipsoids containing compact sets: Application to parameter bounding ⋮ Optimal estimation theory for dynamic systems with set membership uncertainty: An overview ⋮ An inverse method for bounded error parameter identification ⋮ Experiment design in a bounded-error context: Comparison with D- optimality ⋮ On the optimal worst-case experiment design for constrained linear systems
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Dynamic system identification. Experiment design and data analysis
- Robust experiment design via stochastic approximation
- Identification and application of bounded-parameter models
- Robust experiment design via maximin optimization
- On the value of information in system identification-bounded noise case
- An analytical expression and an algorithm for the volume of a convex polyhedron in \(R^ n\).
- Experiment design in a bounded-error context: Comparison with D- optimality
- DESIGN OF EXPERIMENTS IN NON-LINEAR SITUATIONS
- Optimum Designs in Regression Problems
- Exact recursive polyhedral description of the feasible parameter set for bounded-error models
- Optimal sampling schedule for parameter estimation of linear models with unknown but bounded measurement errors
- Convex design theory1
- Estimation theory and uncertainty intervals evaluation in presence of unknown but bounded errors: Linear families of models and estimators
- Optimal input signals for parameter estimation in dynamic systems--Survey and new results
- On optimal choice of sampling strategies for linear system identification
- The Design of Experiments for Parameter Estimation
- Locally Optimal Designs for Estimating Parameters