The Hilbert kernel regression estimate.
From MaRDI portal
Publication:1264520
DOI10.1006/jmva.1997.1725zbMath1126.62339OpenAlexW2024489202MaRDI QIDQ1264520
Adam Krzyżak, Luc P. Devroye, László Györfi
Publication date: 18 November 1998
Published in: Journal of Multivariate Analysis (Search for Journal in Brave)
Full work available at URL: https://semanticscholar.org/paper/4678c352e37752c58ab7aef42ee495314988d058
convergencebandwidth selectionkernel estimatenonparametric estimationregression function estimationNadaraya-Watson estimate
Nonparametric regression and quantile regression (62G08) Applications of functional analysis in probability theory and statistics (46N30)
Related Items
Deep learning: a statistical viewpoint, Fit without fear: remarkable mathematical phenomena of deep learning through the prism of interpolation, Benign overfitting in linear regression, On the Inconsistency of Kernel Ridgeless Regression in Fixed Dimensions, A Universal Trade-off Between the Model Size, Test Loss, and Training Loss of Linear Predictors, Multiclass classification with potential function rules: margin distribution and generalization, On the Hilbert kernel density estimate, New multivariate product density estimators
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Distribution-free pointwise consistency of kernel regression estimate
- Distribution-free consistency results in nonparametric discrimination and regression function estimation
- Consistent window estimation in nonparametric regression
- Optimal rates of convergence for nonparametric estimators
- On the almost everywhere convergence of nonparametric regression function estimates
- An equivalence theorem for \(L_ 1\) convergence of the kernel regression estimate
- Potential function algorithms for pattern recognition learning machines
- Distribution-free consistency of a nonparametric kernel regression estimate and classification
- Estimation Non-paramétrique de la Régression: Revue Bibliographique
- Necessary and sufficient conditions for the pointwise convergence of nearest neighbor regression function estimates
- The rates of convergence of kernel regression estimates and classification rules
- Probability Inequalities for Sums of Bounded Random Variables
- Some Results on the Complete and Almost Sure Convergence of Linear Combinations of Independent Random Variables and Martingale Differences
- Remarks on Non-Parametric Estimates for Density Functions and Regression Curves