Yang-Mills gauge fields as harmonic functions for the Lévy Laplacian
From MaRDI portal
Publication:1264900
zbMath0904.58011MaRDI QIDQ1264900
Luigi Accardi, Paolo Gibilisco, Igor V. Volovich
Publication date: 21 January 1999
Published in: Russian Journal of Mathematical Physics (Search for Journal in Brave)
Yang-Mills and other gauge theories in quantum field theory (81T13) Special connections and metrics on vector bundles (Hermite-Einstein, Yang-Mills) (53C07) Infinite-dimensional manifolds (58B99) Variational problems concerning extremal problems in several variables; Yang-Mills functionals (58E15)
Related Items
Stochastic Lévy differential operators and Yang–Mills equations, Equivalence of the Navier-Stokes equation and the infinite-dimensional Burgers equation, Даламбертианы Леви и их применение в квантовой теории, Quantum Lévy Laplacian and associated heat equation, The master field for QCD and \(q\)-deformed quantum field theory, Averaging of random walks and shift-invariant measures on a Hilbert space, Quantum probability and Levy Laplacians, Lévy Laplacians, holonomy group and instantons on 4-manifolds, Ergodic theorems for higher order Cesàro means, Applications of Lévy differential operators in the theory of gauge fields, Lévy Laplacians and instantons on manifolds, White noise delta functions and infinite-dimensional Laplacians, The Cauchy problem for nonlinear parabolic equations with Lévy Laplacian, Higher order multi-dimensional extensions of Cesàro theorem, Lévy Laplacian on manifold and Yang-Mills heat flow, Lévy Laplacians in Hida calculus and Malliavin calculus, Characterizing Yang-Mills fields by stochastic parallel transport, Lévy differential operators and Gauge invariant equations for Dirac and Higgs fields, Bundle-connection pairs and loop group representations, Extensions of spaces with cylindrical measures and supports of measures determined by the Lévy Laplacian