Leibniz cohomology for differentiable manifolds
From MaRDI portal
Publication:1265652
DOI10.5802/aif.1611zbMath0912.17001OpenAlexW2048428574WikidataQ123355254 ScholiaQ123355254MaRDI QIDQ1265652
Publication date: 22 September 1998
Published in: Annales de l'Institut Fourier (Search for Journal in Brave)
Full work available at URL: http://www.numdam.org/item?id=AIF_1998__48_1_73_0
differentiable manifoldsfoliationsLeibniz algebrasGelfand-Fuks cohomologycontinuous Leibniz cohomologyLeibniz cohomology
Foliations in differential topology; geometric theory (57R30) Leibniz algebras (17A32) Classifying spaces for foliations; Gelfand-Fuks cohomology (57R32) Nonassociative algebras satisfying other identities (17A30)
Related Items
Leibniz cohomology and the calculus of variations ⋮ Universal central extensions of Leibniz superalgebras over superdialgebras ⋮ On the degenerations of solvable Leibniz algebras ⋮ Leibniz cohomology and connections on differentiable manifolds ⋮ A natural extension of the universal enveloping algebra functor to crossed modules of Leibniz algebras ⋮ A non-abelian exterior product and homology of Leibniz algebras ⋮ Cohomology of Leibniz algebras ⋮ On Leibniz cohomology ⋮ On the Leibniz (co)homology of the Lie algebra of the Euclidean group ⋮ Some properties of the Schur multiplier and stem covers of Leibniz crossed modules ⋮ A cohomological characterization of Leibniz central extensions of Lie algebras ⋮ ON ISOMORPHISM CRITERIA FOR LEIBNIZ CENTRAL EXTENSIONS OF A LINEAR DEFORMATION OF μn ⋮ Leibniz central extensions of Lie superalgebras
Cites Work
- Relative algebraic K-theory and cyclic homology
- From Poisson algebras to Gerstenhaber algebras
- The cohomology of the vector fields on a manifold
- Universal enveloping algebras of Leibniz algebras and (co)homology
- A noncommutative version of Lie algebras: Leibniz algebras
- On Leibniz homology
- Koszul duality for operads
- Cohomology of Lie algebras
- CUP-Product for Leibnitz Cohomology and Dual Leibniz Algebras.
- Cohomology Theory of Lie Groups and Lie Algebras
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item