A functional calculus on the Heisenberg group and the boundary layer potential \(\square_+^{-1}\) for the \(\bar\partial\)-Neumann problem
DOI10.1006/jfan.1997.3219zbMath0908.43007OpenAlexW2029439802MaRDI QIDQ1266258
Peter C. Greiner, Yaping Jiang, Luis A. Seco, Richard W. Beals
Publication date: 27 October 1998
Published in: Journal of Functional Analysis (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1006/jfan.1997.3219
Heisenberg groupjoint spectrumfunctional calculuspartial differential operators\(\bar\partial\)-Neumann problemconvolution kernels
Analysis on real and complex Lie groups (22E30) Boundary value problems for PDEs with pseudodifferential operators (35S15) Pseudodifferential and Fourier integral operators on manifolds (58J40) Boundary value problems on manifolds (58J32) Analysis on other specific Lie groups (43A80)
Related Items
Cites Work
- L\({}^ p\) harmonic analysis and Radon transforms on the Heisenberg group
- Least action principle, heat propagation and subelliptic estimates on certain nilpotent groups
- Complex Hamiltonian mechanics and parametrices for subelliptic Laplacians. I
- Calculus on Heisenberg Manifolds. (AM-119)
- Estimates for the \documentclass{article}\pagestyle{empty}\begin{document}$ \mathop \partial \limits^ - _b $\end{document} complex and analysis on the heisenberg group
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item