On the Galois structure of circular units in \(\mathbb{Z}_p\)-extensions
From MaRDI portal
Publication:1267290
DOI10.1006/jnth.1997.2200zbMath0911.11051OpenAlexW2004761329MaRDI QIDQ1267290
Publication date: 5 May 1999
Published in: Journal of Number Theory (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1006/jnth.1997.2200
cohomologyGalois module structurecircular unitsuniversal normsreal abelian fieldcyclotomic \(\mathbb{Z}_p\)-extensioncyclotomic towerGalois behaviour
Iwasawa theory (11R23) Cyclotomic extensions (11R18) Integral representations related to algebraic numbers; Galois module structure of rings of integers (11R33) Galois cohomology (11R34)
Related Items (6)
Cyclotomic units and Stickelberger ideals of global function fields ⋮ SUR LA CONJECTURE FAIBLE DE GREENBERG DANS LE CAS ABÉLIEN p-DÉCOMPOSÉ ⋮ Truncated Euler Systems over Imaginary Quadratic Fields ⋮ Stark units in \(\mathbb{Z}_p\)-extensions ⋮ Formules de classes pour les corps abéliens réels. (Class formulae for real Abelian fields) ⋮ ASYMPTOTIC COHOMOLOGY OF CIRCULAR UNITS
Uses Software
Cites Work
- Unnamed Item
- Unnamed Item
- On the Stickelberger ideal and the circular units of an abelian field
- Cohomology groups of cyclotomic units
- On relatively invariant circular units and Stickelberger elements
- Galois relations for cyclotomic numbers and \(p\)-units
- Cyclotomic units in \(\mathbb Z_p\)-extensions
- On a construction of \(p\)-units in abelian fields
- On universal norms in \(\mathbb{Z}_ p\)-extensions
- On the Stickelberger ideal and circular units of a compositum of quadratic fields
- On relations between cyclotomic units
- Units in real Abelian fields.
- Generators and Relations for Cyclotomic Units
- On the units of algebraic number fields
This page was built for publication: On the Galois structure of circular units in \(\mathbb{Z}_p\)-extensions