Irreducible inclusions of factors and multiplicative unitaries
From MaRDI portal
Publication:1270219
DOI10.1006/jfan.1997.3206zbMath0921.46065OpenAlexW2077357813MaRDI QIDQ1270219
Publication date: 26 April 1999
Published in: Journal of Functional Analysis (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1006/jfan.1997.3206
crossed productmultiplicative unitariesfixed-point algebracanonical tower of factorsfaithful semi-finite normal operator-valued weighttower of successive crossed productsWoronowicz algebras
Noncommutative dynamical systems (46L55) Subfactors and their classification (46L37) Classifications of (C^*)-algebras (46L35) Duality theorems for locally compact groups (22D35)
Related Items
\(I\)-factorial quantum torsors and Heisenberg algebras of quantized universal enveloping type, The unitary implementation of a measured quantum groupoid action, The unitary implementation of a locally compact quantum group action, Inclusions of von Neumann algebras and quantum groupoïds. III, Finite quantum groupoids, Compact hypergroups from discrete subfactors, Inclusions of von Neumann algebras, and quantum groupoïds, The canonical endomorphism for infinite index inclusions, Unitaires multiplicatifs en dimension finie et leurs sous-objets. (Multiplicative unitaries on a finite dimensional space and their subobjects.), Inclusions of von Neumann algebras and quantum groupoids. II
Cites Work
- Action of discrete amenable groups on von Neumann algebras
- Tannaka-Krein duality for compact matrix pseudogroups. Twisted SU(N) groups
- Produit croise d'une algebre de von Neumann par une algebre de Kac. II
- Hopf-von Neumann algebra bicrossproducts, Kac algebra bicrossproducts, and the classical Yang-Baxter equations
- Produit croise d'une algebre de von Neumann par une algebre de Kac
- A Galois correspondence for compact groups of automorphisms of von Neumann algebras with a generalization to Kac algebras
- 2-cocycles and twisting of Kac algebras
- A duality for Hopf algebras and for subfactors. I
- A von Neumann algebra framework for the duality of the quantum groups
- Irreducible inclusions of factors, multiplicative unitaries, and Kac algebras
- Paragroup of Adrian Ocneanu and Kac algebra
- Deformation of a Kac algebra by an abelian subgroup
- Unitaires multiplicatifs et dualité pour les produits croisés de $\mathrm{C}^*$-algèbres
- Finite Index Subfactors and Hopf Algebra Crossed Products
- DISCRETE QUANTUM GROUPS I: THE HAAR MEASURE
- An example of finite dimensional Kac algebras of Kac-Paljutkin type
- FROM MULTIPLICATIVE UNITARIES TO QUANTUM GROUPS
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item