On the spectrum of the Schrödinger operator with a constant magnetic field plus a decreasing radial potential
From MaRDI portal
Publication:1270232
DOI10.1006/JFAN.1997.3242zbMath0916.35076OpenAlexW2061671252MaRDI QIDQ1270232
Publication date: 2 December 1998
Published in: Journal of Functional Analysis (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1006/jfan.1997.3242
asymptotic expansions of the eigenvaluesclusters of real positive eigenvaluesWeinstein band invariants
General topics in linear spectral theory for PDEs (35P05) Schrödinger operator, Schrödinger equation (35J10)
Related Items (2)
Harmonic oscillator perturbed by a decreasing scalar potential ⋮ A trace formula and high-energy spectral asymptotics for the perturbed Landau Hamiltonian
Cites Work
- Unnamed Item
- Unnamed Item
- Calcul fonctionnel à plusieurs variables pour des opérateurs pseudodifferentiels dans \(R^ n\)
- Inverse spectral problem for the 2-sphere Schrödinger operators with zonal potentials
- Autour de l'approximation semi-classique. (Around semiclassical approximation)
- Eigenvalue problems for the Schrödinger operator with the magnetic field on a compact Riemann manifold
- Spectre conjoint d'opérateurs pseudo-différentiels qui commutent. II. Le cas intégrable
- Asymptotics of eigenvalue clusters for the Laplacian plus a potential
- Schrödinger operators with magnetic fields. I: General interactions
- Zonal Schrödinger operators on the \(n\)-sphere: Inverse spectral problem and rigidity
- Eine Umkehrung der Sturm-Liouvilleschen Eigenwertaufgabe. Bestimmung der Differentialgleichung durch die Eigenwerte
- Proprietes asymptotiques du spectre dioperateurs pseuwdifferentiels sur IRn
- The weyl calculus of pseudo-differential operators
This page was built for publication: On the spectrum of the Schrödinger operator with a constant magnetic field plus a decreasing radial potential