Mean oscillation of functions and the Paley-Wiener space
DOI10.1007/BF02476028zbMath0914.42011WikidataQ125968572 ScholiaQ125968572MaRDI QIDQ1271491
Publication date: 2 June 1999
Published in: The Journal of Fourier Analysis and Applications (Search for Journal in Brave)
Full work available at URL: https://eudml.org/doc/59565
waveletsBesov spacescommutatorsHankel operatorsPaley-Wiener spacemean oscillationSchatten-von Neumann ideals
Maximal functions, Littlewood-Paley theory (42B25) Sobolev spaces and other spaces of ``smooth functions, embedding theorems, trace theorems (46E35) Fourier and Fourier-Stieltjes transforms and other transforms of Fourier type (42B10) Linear operators belonging to operator ideals (nuclear, (p)-summing, in the Schatten-von Neumann classes, etc.) (47B10) Toeplitz operators, Hankel operators, Wiener-Hopf operators (47B35) General harmonic expansions, frames (42C15)
Related Items (2)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- On the action of Hankel and Toeplitz operators on some function spaces
- Toeplitz and Hankel operators on the Paley-Wiener space
- Hankel operators on the Paley-Wiener space in \({\mathbb{R}}^ d\)
- Factorization theorems for Hardy spaces in several variables
- Fonctions entières et intégrales de Fourier multiples. II
- Wiener-Hopf Operators on a Finite Interval and Schatten-Von Neumann Classes
- Mean Oscillation and Besov Spaces
- Spaces of sequences, sampling theorem, and functions of exponential type
This page was built for publication: Mean oscillation of functions and the Paley-Wiener space