Systèmes d'Euler \(p\)-adiques et théorie d'Iwasawa. (\(p\)-adic Euler systems and Iwasawa theory.)

From MaRDI portal
Publication:1272254

DOI10.5802/aif.1655zbMath0930.11078OpenAlexW2026576169MaRDI QIDQ1272254

Bernadette Perrin-Riou

Publication date: 29 November 1998

Published in: Annales de l'Institut Fourier (Search for Journal in Brave)

Full work available at URL: http://www.numdam.org/item?id=AIF_1998__48_5_1231_0




Related Items

Controlling Selmer groups in the higher core rank caseRefined class number formulas for \(\mathbb{G}_m\)Les nombres de Tamagawa locaux et la conjecture de Bloch et Kato pour les motifs sur un corps abélienColeman-adapted Rubin–Stark Kolyvagin systems and supersingular Iwasawa theory of CM abelian varietiesOn the structure of the module of Euler systems for a \(p\)-adic representationFitting ideals of isotypic parts of even K-groupsIwasawa theory for Rankin-Selberg products of \(p\)-nonordinary eigenformsOn the Iwasawa theory of CM fields for supersingular primesBloch-Kato conjecture and Main Conjecture of Iwasawa theory for Dirichlet charactersOn the \(p\)-adic Birch, Swinnerton-Dyer conjecture for non-semistable reductionEuler systems and special unitsCircular distributions and Euler systemsEuler system for Galois deformations.Tamagawa defect of Euler systemsOn higher fitting ideals of certain Iwasawa modules associated with Galois representations and Euler systemsEuler systems with local conditionsEuler systems for Rankin-Selberg convolutions of modular formsStickelberger elements and Kolyvagin systemsStark units and the main conjectures for totally real fieldsOn Euler systems for adjoint Hilbert modular Galois representationsSpecialization method in Krull dimension two and Euler system theory over normal deformation ringsRank-two Euler systems for symmetric squaresSpecial issues in honour of Bernadette Perrin-Riou. IIwasawa theory of automorphic representations of \(\mathrm{GL}_{2n}\) at non-ordinary primes\(K\)-theory of curves over number fieldsA higher rank Euler system for Gm over a totally real field



Cites Work