Stably free rings of integers over \(\mathbb{Z}[H_8\times C_2]\)
From MaRDI portal
Publication:1273186
DOI10.5802/jtnb.224zbMath0924.11093OpenAlexW2319875972MaRDI QIDQ1273186
Publication date: 23 June 1999
Published in: Journal de Théorie des Nombres de Bordeaux (Search for Journal in Brave)
Full work available at URL: http://www.numdam.org/item?id=JTNB_1998__10_1_163_0
class groupambiguous idealsbiquadratic bicyclic extensionnon-free stably free modulequaternionic extensionrepresentations by rings of algebraic integers
Integral representations of finite groups (20C10) Integral representations related to algebraic numbers; Galois module structure of rings of integers (11R33) Other abelian and metabelian extensions (11R20) Stability for projective modules (19A13)
Related Items
Computing isomorphisms between lattices, Computing generators of free modules over orders in group algebras., Normal integral bases for 𝐴₄ extensions of the rationals, Construction of a normal basis for extensions of \(\mathbb Q\) with group \(D_4\), Computing generators of free modules over orders in group algebras II
Uses Software
Cites Work
- Induced representations and projective modules
- Explicit construction of \(\tilde A_ n\) type fields
- Projective modules over group rings and maximal orders
- On Fröhlich's conjecture for rings of integers of tame extensions
- Genera and decompositions of lattices over orders
- Artin-root numbers and normal integral bases for quaternion fields
- Projective modules over binary polyhedral groups.
- Locally free modules over arithmetic orders.
- Arithmetic and Galois module structure for tame extensions.
- Un anneau d'entiers stablement libre et non libre
- Normal Bases in Galois Extensions of Number Fields
- Modules sur l'algèbre du groupe quaternionien
- Introduction to Algebraic K-Theory. (AM-72)
- On the K ‐theory of the quaternion group
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item