Infinitely differentiable functions invariant on the tangent space of a symmetric space
From MaRDI portal
Publication:1275260
DOI10.5802/AFST.899zbMath0914.22011OpenAlexW2316671634MaRDI QIDQ1275260
Publication date: 21 June 1999
Published in: Annales de la Faculté des Sciences de Toulouse. Mathématiques. Série VI (Search for Journal in Brave)
Full work available at URL: http://www.numdam.org/item?id=AFST_1998_6_7_2_293_0
symmetric spacereductive Lie groupinfinitely differentiable functionCartan subgroupHarish-Chandra's descent method
Analysis on real and complex Lie groups (22E30) General properties and structure of real Lie groups (22E15)
Related Items (1)
Cites Work
- Hyperfunctions and harmonic analysis on symmetric spaces
- Invariant eigendistributions on the tangent space of a rank one semisimple symmetric space
- On the \(C^\infty\) Chevalley's theorem
- Orbits on affine symmetric spaces under the action of the isotropy subgroups
- Harmonic analysis on real reductive groups
- The Structure of Semisimple Symmetric Spaces
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: Infinitely differentiable functions invariant on the tangent space of a symmetric space