Singularities of embedding operators between symmetric function spaces on \([0,1]\)
DOI10.1007/BF02358979zbMath0914.46029MaRDI QIDQ1277555
Publication date: 7 June 1999
Published in: Mathematical Notes (Search for Journal in Brave)
Dunford-Pettis propertyweak compactnessquasi-Banach spacesabsolutely summingsymmetric function spacesembedding operatorconvex spacesstrict singularityabsolutely \((q,p)\)-summing operator
Spaces of measurable functions ((L^p)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.) (46E30) Sobolev spaces and other spaces of ``smooth functions, embedding theorems, trace theorems (46E35)
Related Items (3)
Cites Work
- On \(l^ p\)-complemented copies in Orlicz spaces. II
- On smallest and largest spaces among rearrangement-invariant \(p\)-Banach function spaces (\(0<p<1\))
- Rademacher series in symmetric spaces
- Cotype and type of Lorentz function spaces
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: Singularities of embedding operators between symmetric function spaces on \([0,1]\)