Non-semibounded sesquilinear forms and left-indefinite Sturm-Liouville problems
DOI10.1007/BF01203080zbMath0922.47014MaRDI QIDQ1280548
Publication date: 15 March 1999
Published in: Integral Equations and Operator Theory (Search for Journal in Brave)
Sturm-Liouville problemselfadjoint operatorweighted Sobolev normclosed densely defined semibounded Hermitian sesquilinear formKato's first and second representation theoremKrein space methods
Sturm-Liouville theory (34B24) Eigenfunctions, eigenfunction expansions, completeness of eigenfunctions of ordinary differential operators (34L10) Spaces with indefinite inner product (Kre?n spaces, Pontryagin spaces, etc.) (46C20) Representation theory of linear operators (47A67) Linear operators on spaces with an indefinite metric (47B50)
Related Items (10)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- A Krein space approach to symmetric ordinary differential operators with an indefinite weigth function
- On spectral properties of regular quasidefinite pencils F-\(\lambda\) G
- On the regularity of the critical point infinity of definitizable operators
- Regular boundary value problems associated with pairs of ordinary differential expressions
- Indefinite boundary eigenvalue problems in a Pontrjagin space setting
- A Krein space approach to elliptic eigenvalue problems with indefinite weights
- Some properties of eigenfunctions of linear pencils
- S-hermitesche Rand-Eigenwertprobleme. I
- S-hermitesche Rand-Eigenwertprobleme. II
- S-hermitesche Rand-Eigenwertprobleme. III
- Sturm-Liouville operators with an indefinite weight function
- Some Remarks on Left-Definite Hamiltonian Systems in the Regular Case
- Sturm–Liouville problems with indefinite weights and Everitt's inequality
- The “Turning Point Condition” of Beals for Indefinite Sturm‐Liouville Problems
This page was built for publication: Non-semibounded sesquilinear forms and left-indefinite Sturm-Liouville problems