On sectional genus of \(k\)-very ample line bundles on smooth surfaces with non-negative Kodaira dimension
From MaRDI portal
Publication:1282077
DOI10.2996/kmj/1138043870zbMath0930.14003OpenAlexW2055126114MaRDI QIDQ1282077
Publication date: 28 March 1999
Published in: Kodai Mathematical Journal (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.2996/kmj/1138043870
Families, moduli, classification: algebraic theory (14J10) Divisors, linear systems, invertible sheaves (14C20) Special surfaces (14J25)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- A lower bound for the sectional genus of quasi-polarized surfaces
- Irregularity of surfaces with a linear pencil
- A Barth-type theorem for branched coverings of projective space
- On hyperelliptic polarized varieties
- Elliptic surfaces with an ample divisor of genus two
- On the preservation of \(k\)-very ampleness under adjunction
- The adjunction theory of complex projective varieties
- Projective surfaces with \(k\)-very ample line bundles of genus \(\leq 3k+1\)
- A lower bound for sectional genus of quasi-polarized manifolds
- On polarized surfaces of degree three whose adjoint bundles are not spanned
- Inégalités numériques pour les surfaces de type général. Appendice : «L'inégalité $p_g \ge 2q-4$ pour les surfaces de type général» par A. Beauville
- Projective surfaces with K-very ample line bundles of degree ≤ 4K + 4
- On Sectional Genus of Quasi—Polarized Manifolds with Non‐Negative Kodaira Dimension
This page was built for publication: On sectional genus of \(k\)-very ample line bundles on smooth surfaces with non-negative Kodaira dimension