The Shintani cocycle. II: Partial \(\zeta\)-functions, cohomologous cocycles and \(p\)-adic interpolation
From MaRDI portal
Publication:1283045
DOI10.1006/jnth.1998.2332zbMath0980.11027OpenAlexW1995999404MaRDI QIDQ1283045
Publication date: 27 February 2002
Published in: Journal of Number Theory (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1006/jnth.1998.2332
Zeta functions and (L)-functions of number fields (11R42) Dedekind eta function, Dedekind sums (11F20)
Related Items (6)
The \(p\)-adic Shintani modular symbol and evil Eisenstein series ⋮ Canonical equivariant cohomology classes generating zeta values of totally real fields ⋮ Verifying a \(p\)-adic abelian Stark conjecture at \(s=1\). ⋮ Computing $p$-adic $L$-functions of totally real number fields ⋮ \(p\)-adic polylogarithms and \(p\)-adic Hecke \(L\)-functions for totally real fields ⋮ Twisted zeta-functions and Abelian Stark conjectures
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- The Stark conjectures on Artin \(L\)-functions at \(s=0\). Lecture notes of a course in Orsay edited by Dominique Bernardi and Norbert Schappacher.
- Brumer elements over a real quadratic base field
- Some new reciprocity formulas for generalized Dedekind sums
- Another look at \(p\)-adic \(L\)-functions for totally real fields
- Eisenstein cocycles for \(GL_ 2 \mathbb{Q}\) and values of \(L\)-functions in real quadratic fields
- On p-adic L-functions over real quadratic fields
- Values at negative integers of zeta functions and \(p\)-adic zeta functions
- Eisenstein group cocycles for \(\text{GL}_ n\) and values of \(L\)- functions
- \(p\)-adic limits of Shintani generating functions for a real quadratic field
- Properties of Higher-Dimensional Shintani Generating Functions and Cocycles on Pgl3 (Q)
- Integrality Properties of the Values of Partial Zeta Functions
- Reciprocity formulae for general Dedekind-Rademacher sums
This page was built for publication: The Shintani cocycle. II: Partial \(\zeta\)-functions, cohomologous cocycles and \(p\)-adic interpolation