Special directions on contact metric manifolds of negative \(\xi\)-sectional curvature
DOI10.5802/AFST.902zbMath0918.53012OpenAlexW1996538251MaRDI QIDQ1284674
Publication date: 23 August 1999
Published in: Annales de la Faculté des Sciences de Toulouse. Mathématiques. Série VI (Search for Journal in Brave)
Full work available at URL: http://www.numdam.org/item?id=AFST_1998_6_7_3_365_0
Anosov flowcontact metric manifoldnegative sectional curvaturespecial directionsconformally Anosovcontact subbundle
Special Riemannian manifolds (Einstein, Sasakian, etc.) (53C25) General geometric structures on manifolds (almost complex, almost product structures, etc.) (53C15) Dynamical systems with hyperbolic behavior (37D99)
Cites Work
- A classification of 3-dimensional contact metric manifolds with \(Q\phi=\phi Q\)
- Torsion and critical metrics on contact three-manifolds
- Ergodic theory. Introductory lectures
- Contact manifolds in Riemannian geometry
- Curvatures of left invariant metrics on Lie groups
- On the hypotheses of Rabinowitz' periodic orbit theorems
- On a class of 3-dimensional contact metric manifolds
- Tangent sphere bundles satisfying \(\nabla_ \xi \tau=0\)
- Anosov flows and non-Stein symplectic manifolds
- Flows on Homogeneous Spaces. (AM-53)
- Flots d'Anosov dont les feuilletages stables sont différentiables
- Flots d'Anosov a Distributions Stable et Instable Differentiables
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: Special directions on contact metric manifolds of negative \(\xi\)-sectional curvature