On boundary behaviour of symplectomorphisms
From MaRDI portal
Publication:1288522
DOI10.2996/kmj/1138043941zbMath0980.53100OpenAlexW2072608242MaRDI QIDQ1288522
Elisabetta Barletta, Sorin Dragomir
Publication date: 6 March 2002
Published in: Kodai Mathematical Journal (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.2996/kmj/1138043941
contact structuresymplectic structurestrictly pseudoconvex domainsymplectomorphismKähler 2-formKählerian metrics
Symplectic and contact topology in high or arbitrary dimension (57R17) Global differential geometry of Hermitian and Kählerian manifolds (53C55) Global theory of symplectic and contact manifolds (53D35)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Quasiconformal mappings on the Heisenberg group
- Boundary behaviour of the complex Monge-Ampère equation
- On the dependence of the reproducing kernel on the weight of integration
- On weights which admit the reproducing kernel of Bergman type
- Hankel operators on weighted Bergman spaces on strongly pseudoconvex domains
- The globally homeomorphic solutions to Beltrami system in \(\mathbb{C}^ n\)
- Foundations for the theory of quasiconformal mappings on the Heisenberg group
- The Bergman kernel and biholomorphic mappings of pseudoconvex domains
- Estimates for the \documentclass{article}\pagestyle{empty}\begin{document}$ \mathop \partial \limits^ - _b $\end{document} complex and analysis on the heisenberg group
- On the Forelli-Rudin construction and weighted Bergman projections
- On weighted Bergman kernels of bounded domains
- Sobolev regularity of the weighted bergman projections and estimates for minimal solutions to the -equation
- Geometry of Bounded Domains