On the duality mapping of \(L^{\infty}\) spaces
DOI10.32917/HMJ/1206125156zbMath0959.46018OpenAlexW1556412830MaRDI QIDQ1293785
Publication date: 20 April 2001
Published in: Hiroshima Mathematical Journal (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.32917/hmj/1206125156
Banach latticeYosida-Hewitt decompositionJordan decompositionextremal pointsduality map0-1 measure\(L^\infty\) spacedissipativity of quasilinear diffusion operatorspurely finitely additive measurequasilinear diffusion operatorYosida-Hewitt theory
Spaces of measurable functions ((L^p)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.) (46E30) Reaction-diffusion equations (35K57) Banach lattices (46B42)
This page was built for publication: On the duality mapping of \(L^{\infty}\) spaces