Low-dimensional filiform Lie algebras
From MaRDI portal
Publication:1295573
DOI10.1016/S0022-4049(97)00096-0zbMath0929.17004OpenAlexW1995267083WikidataQ115340096 ScholiaQ115340096MaRDI QIDQ1295573
J. R. Gómez, A. Jiménez-Merchán, Yu. B. Khakimdzhanov
Publication date: 2 February 2000
Published in: Journal of Pure and Applied Algebra (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/s0022-4049(97)00096-0
Related Items (45)
On Deformations of the Filiform Lie SuperalgebraLn,m ⋮ Symplectic or contact structures on Lie groups ⋮ (n– 4)-filiform lie algebras ⋮ ON ONE-DIMENSIONAL LEIBNIZ CENTRAL EXTENSIONS OF A FILIFORM LIE ALGEBRA ⋮ There are no rigid filiform Lie algebras of low dimension ⋮ Isomorphism classes and invariants of low-dimensional filiform Leibniz algebras ⋮ On Classification of Filiform Leibniz Algebras ⋮ Degenerations to filiform Lie algebras of dimension 9 ⋮ Nilpotent Lie algebras of class 3 with 1-dimensional center and 3-dimensional derived subalgebra ⋮ The maximal abelian dimension of a Lie algebra, Rentschler's property and Milovanov's conjecture ⋮ On isomorphism criterion for a subclass of complex filiform Leibniz algebras ⋮ Solvable infinite filiform Lie algebras ⋮ Unnamed Item ⋮ Complex filiform Lie algebras of dimension 11. ⋮ A differential operator realisation approach for constructing Casimir operators of non-semisimple Lie algebras ⋮ Filiform Lie algebras with low derived length ⋮ 3-filiform Lie algebras of dimension 8 ⋮ Unnamed Item ⋮ Unnamed Item ⋮ New results in the classification of filiform Lie algebras ⋮ Pre-derivations and description of non-strongly nilpotent filiform Leibniz algebras ⋮ SUR UNE CLASSE D'ALGEBRES DE LIE DE DIMENSION INFINIE ⋮ ON LIE ALGEBRAS WHOSE NILRADICAL IS (n—p)-FILIFORM ⋮ Symplectic structures on the filiform Lie algebras ⋮ Solvable Indecomposable Extensions of Two Nilpotent Lie Algebras ⋮ Quasi-filiform Lie algebras of maximum length ⋮ Deformations of filiform Lie algebras and superalgebras ⋮ On the classification of rigid Lie algebras ⋮ Solvable extensions of the naturally graded quasi-filiform Leibniz algebra of second typeℒ2 ⋮ Geometry of central extensions of nilpotent Lie algebras ⋮ Group Gradings on Filiform Lie Algebras ⋮ On Isomorphisms and Invariants of Finite Dimensional Complex Filiform Leibniz Algebras ⋮ The classification of non-characteristically nilpotent filiform Leibniz algebras ⋮ Projective non affine structures on filiform Lie groups ⋮ On isomorphism classes and invariants of a subclass of low-dimensional complex filiform Leibniz algebras ⋮ ON LIE-LIKE COMPLEX FILIFORM LEIBNIZ ALGEBRAS ⋮ ON THE CLASSIFICATION OF COMPLEX LEIBNIZ SUPERALGEBRAS WITH CHARACTERISTIC SEQUENCE (n - 1, 1 | m1, …, mk) AND NILINDEX n + m ⋮ Solvable extensions of naturally graded quasi-filiform Leibniz algebras of second type ℒ1 and ℒ3 ⋮ Characterization of Nilpotent Lie Algebras Pair by Their Schur Multipliers ⋮ Quasi-filiform Lie algebras of maximum length revisited ⋮ Characteristically nilpotent Lie algebras and symplectic structures ⋮ A new method for classifying complex filiform Lie algebras ⋮ A class of nilpotent lie algebras ⋮ LIE ALGEBRA PREDERIVATIONS AND STRONGLY NILPOTENT LIE ALGEBRAS ⋮ Right and left solvable extensions of an associative Leibniz algebra
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Classification of filiform Lie algebras in dimension 8
- Classification des algèbres de Lie nilpotentes complexes de dimension 7. (Classification of nilpotent complex Lie algebras of dimension 7)
- Variety of laws on nilpotent Lie algebras.
- On the varieties of nilpotent Lie algebras of dimension 7 and 8
- On the k-abelian filiform lie algebras
- Derivations of Nilpotent Lie Algebras
- Sur Les Représentations Unitaires Des Groupes De Lie Nilpotents. III
- Classification of real and complex nilpotent lie algebras of dimension 7
- Degenerations of 6-dimensional nilpotent lie algebras over C
- Some nilpotent Lie algebras of even dimension
- Cohomologie des algèbres de Lie nilpotentes. Application à l'étude de la variété des algèbres de Lie nilpotentes
This page was built for publication: Low-dimensional filiform Lie algebras