Proper holomorphic mappings and related automorphism groups
From MaRDI portal
Publication:1298374
DOI10.1007/BF02921637zbMath0942.32019MaRDI QIDQ1298374
El Hassan Youssfi, Karl Oeljeklaus
Publication date: 3 August 2000
Published in: The Journal of Geometric Analysis (Search for Journal in Brave)
Complex Lie groups, group actions on complex spaces (32M05) Proper holomorphic mappings, finiteness theorems (32H35)
Related Items
Bergman kernels, TYZ expansions and Hankel operators on the Kepler manifold ⋮ Duality of Fock spaces with respect to the minimal norm ⋮ Reducing submodules of Hilbert modules and Chevalley-Shephard-Todd theorem ⋮ The Bergman kernel of the minimal ball and applications ⋮ On distance function in some new analytic Bergman type spaces in \(\mathbb C^n\) ⋮ Unnamed Item
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Boundary behavior of proper holomorphic correspondences
- Homogeneous hyperbolic manifolds and homogeneous Siegel domains
- On a minimal complex norm that extends the real Euclidean norm
- Holomorphic equivalence problem for bounded Reinhardt domains
- Characterization of the unit ball in \(\mathbb{C}^n\) by its automorphism group
- Sur une caractérisation de la boule parmi les domaines de \(\mathbb{C}^n\) par son groupe d'automorphismes
- On proper holomorphic mappings between rigid polynomial domains in \(\mathbb C^{n+1}\)
- Kompakte Transformationsgruppen Steinscher Räume. (On compact transformation groups of Stein spaces)
- Proper holomorphic mappings between circular domains
- Sur les domaines bornes homogenes de l'espace de \(n\) variables. complexes
- Proper holomorphic mappings between bounded complete Reinhardt domains in \(C^ 2\)
- Über das Randverhalten von holomorphen Automorphismen beschränkter Gebiete
- Representations of Semisimple Lie Groups VI: Integrable and Square-Integrable Representations
- HOLOMORPHIC INEQUIVALENCE OF SOME CLASSES OF DOMAINS IN $\mathbf{C}^n$
- Introduction to Lie Algebras and Representation Theory