A streamline-diffusion method for nonconforming finite element approximations applied to convection-diffusion problems
DOI10.1016/S0045-7825(98)80014-5zbMath0942.76041OpenAlexW2061074558WikidataQ127561172 ScholiaQ127561172MaRDI QIDQ1299284
Volker John, Tobiska, Lutz, Friedhelm Schieweck, Gunar Matthies
Publication date: 27 August 2000
Published in: Computer Methods in Applied Mechanics and Engineering (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/s0045-7825(98)80014-5
convergenceconvection-diffusion problemsquadrilateral elementstriangular elementscoerciveness of bilinear formjump termsnonconforming streamline-diffusion finite element method
Finite element methods applied to problems in fluid mechanics (76M10) Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs (65M60) Diffusion and convection (76R99)
Related Items
Cites Work
- Pointwise error estimates for a streamline diffusion finite element scheme
- Nonconforming streamline-diffusion-finite-element-methods for convection-diffusion problems
- An upwind finite element method for singularly perturbed elliptic problems and local estimates in the $L^\infty $-norm
- Streamline Diffusion Methods for the Incompressible Euler and Navier-Stokes Equations
- Crosswind Smear and Pointwise Errors in Streamline Diffusion Finite Element Methods
- On the Robustness of ILU Smoothing
- Simple nonconforming quadrilateral Stokes element
- Conforming and nonconforming finite element methods for solving the stationary Stokes equations I
- Robustness of an Elementwise Parallel Finite Element Method for Convection-Diffusion Problems
- Adaptive Streamline Diffusion Finite Element Methods for Stationary Convection-Diffusion Problems
- A nonconforming finite element method of upstream type applied to the stationary Navier-Stokes equation
- Analysis of a Streamline Diffusion Finite Element Method for the Stokes and Navier–Stokes Equations
- How accurate is the streamline diffusion finite element method?
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item