Closed-form expressions for the finite difference approximations of first and higher derivatives based on Taylor series

From MaRDI portal
Publication:1300713

DOI10.1016/S0377-0427(99)00088-6zbMath0939.65031MaRDI QIDQ1300713

Ryoji Ohba, Ishtiaq Rasool Khan

Publication date: 10 July 2000

Published in: Journal of Computational and Applied Mathematics (Search for Journal in Brave)




Related Items

Taylor series based finite difference approximations of higher-degree derivatives, Detailed analysis of the effects of stencil spatial variations with arbitrary high-order finite-difference Maxwell solver, A remainder formula of numerical differentiation for the generalized Lagrange interpolation, Controlling the numerical Cerenkov instability in PIC simulations using a customized finite difference Maxwell solver and a local FFT based current correction, An algorithm for the finite difference approximation of derivatives with arbitrary degree and order of accuracy, Two-step perfectly matched layer for arbitrary-order pseudo-spectral analytical time-domain methods, A recursive algorithm for optimizing differentiation, New finite difference formulas for numerical differentiation, General explicit difference formulas for numerical differentiation, Comparison of Taylor finite difference and window finite difference and their application in FDTD, Hermite interpolation and its numerical differentiation formula involving symmetric functions, Representation for the Lagrangian numerical differentiation formula involving elementary symmetric functions, Finite Differences in Forward and Inverse Imaging Problems: MaxPol Design, On the Hermite interpolation, Analysis of the spectral symbol associated to discretization schemes of linear self-adjoint differential operators, Low-delay band-pass maximally flat FIR digital differentiators, Mathematical proof of closed form expressions for finite difference approximations based on Taylor series


Uses Software


Cites Work