Runge-Walsh-wavelet approximation for the Helmholtz equation
DOI10.1006/jmaa.1999.6406zbMath0940.35062OpenAlexW2064830374MaRDI QIDQ1304645
Willi Freeden, Frank Schneider
Publication date: 22 September 1999
Published in: Journal of Mathematical Analysis and Applications (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1006/jmaa.1999.6406
Helmholtz equationboundary-value problemsRunge-Walsh approximationpyramid schemescale continuous and discrete metaharmonic wavelets
Nontrigonometric harmonic analysis involving wavelets and other special systems (42C40) Numerical methods for wavelets (65T60) Series solutions to PDEs (35C10) Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation (35J05)
Related Items (4)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Combined spherical harmonic and wavelet expansion -- a future concept in earth's gravitational determination
- An integrated wavelet concept of physical geodesy
- Die C-Vollständigkeit partikulaerer Lösungssysteme der Schwingungsgleichung Delta U + \(k^ 2\) U = 0
- Orthogonal and nonorthogonal multiresolution analysis, scale discrete and exact fully discrete wavelet transform on the sphere
- Computing Fourier transforms and convolutions on the 2-sphere
- Spherical wavelet transform and its discretization
- Spherical harmonics
- Zwei Klassen vollständiger Funktionensysteme zur Behandlung der Randwertaufgaben der Schwingungsgleichung ΔU + k2U = 0
- A spline interpolation method for solving boundary value problems of potential theory from discretely given data
This page was built for publication: Runge-Walsh-wavelet approximation for the Helmholtz equation