Quantization of the Dixmier localization of \(U(sl_{n+1}(\mathbb C))\)
From MaRDI portal
Publication:1305028
DOI10.1006/jabr.1998.7827zbMath0940.17009OpenAlexW1964452459MaRDI QIDQ1305028
Publication date: 9 January 2000
Published in: Journal of Algebra (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1006/jabr.1998.7827
quantum enveloping algebralocalization of Dixmieruniversal enveloping algebras of simple Lie algebras
Quantum groups (quantized enveloping algebras) and related deformations (17B37) Universal enveloping (super)algebras (17B35)
Related Items
Real spectra of quantum groups, Solution of a \(q\)-difference Noether problem and the quantum Gelfand-Kirillov conjecture for \(\mathfrak{gl}_N\), De Concini-Kac filtration and Gelfand-Tsetlin generators for quantum \(\mathfrak{gl}_N\), Theq-difference Noether problem for complex reflection groups and quantum OGZ algebras, On the semi-invariants of a parabolic subalgebra of a quantized enveloping algebra, The centre of quantum \(\mathfrak {sl}_n\) at a root of unity
Cites Work
- Completely prime ideals of the enveloping algebra of \(\mathfrak{gl}_ n({\mathbb{C}})\)).
- Local finiteness of the adjoint action for quantized enveloping algebras
- On a parabolic algebra \(P\) of \(\check U_q(sl_{n+1})\) and its semi-invariants with respect to the adjoint action of \(P\)
- On the field of fractions of certain quantum algebras
- The skew field of rational functions on \(\text{GL}_ q(n,K)\)
- Sur les corps liés aux algèbres enveloppantes des algèbres de Lie
- Separation of Variables for Quantized Enveloping Algebras
- On the Gelfand-Kirillov conjecture for quantum algebras
- Analogues de la forme de Killing et du théorème d'Harish-Chandra pour les groupes quantiques
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item