The inverted pendulum: A singularity theory approach
DOI10.1006/jdeq.1998.3623zbMath0936.34029OpenAlexW2098538867MaRDI QIDQ1305487
Igor Hoveijn, Henk W. Broer, Martijn van Noort, Gert Vegter
Publication date: 8 May 2000
Published in: Journal of Differential Equations (Search for Journal in Brave)
Full work available at URL: https://pure.rug.nl/ws/files/3153846/1999JDiffEqBroer.pdf
Bifurcation problems for finite-dimensional Hamiltonian and Lagrangian systems (37J20) Bifurcation theory for ordinary differential equations (34C23) Normal forms for dynamical systems (37G05) Singular perturbations of ordinary differential equations (34D15) Perturbations of finite-dimensional Hamiltonian systems, normal forms, small divisors, KAM theory, Arnol'd diffusion (37J40) Theory of singularities and catastrophe theory (58K99) Stability problems for finite-dimensional Hamiltonian and Lagrangian systems (37J25)
Related Items
Uses Software
Cites Work
- A reversible bifurcation analysis of the inverted pendulum
- Equivariant singularity theory with distinguished parameters: two case studies of resonant Hamiltonian systems
- Nonlinear oscillations, dynamical systems, and bifurcations of vector fields
- The Hamiltonian Hopf bifurcation
- Singularities and groups in bifurcation theory. Volume I
- Singularites \(C^\infty\) en presence de symétrie. En particulier en presence de la symétrie d'un groupe de Lie compact
- A normally elliptic Hamiltonian bifurcation
- Geometrical aspects of stability theory for Hill's equations
- Stability of the Inverted Pendulum—A Topological Explanation
- Resonances in a spring-pendulum: algorithms for equivariant singularity theory
- THE NONLINEAR MATHIEU EQUATION
- Equivalence and Decomposition of Vector Fields About an Elementary Critical Point
- Averaging methods in nonlinear dynamical systems
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item