Finite element solution of nonsteady incompressible viscous flow between two rotating concentric spheres
DOI10.1016/0045-7930(93)90034-7zbMath0782.76057OpenAlexW1985761013MaRDI QIDQ1309596
Publication date: 24 February 1994
Published in: Computers and Fluids (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/0045-7930(93)90034-7
pressurespherical coordinatesalternating-direction methodtransient solutionsteady-state solutionaxially symmetric flowvelocity componentsannular- sector-type elementGlowinski's algorithm
Navier-Stokes equations for incompressible viscous fluids (76D05) General theory of rotating fluids (76U05) Finite element methods applied to problems in fluid mechanics (76M10)
Related Items (1)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Finite difference solution to the flow between two rotating spheres
- Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations
- Numerical studies of steady, viscous, incompressible flow between two rotating spheres
- Calculation of the flow between two rotating spheres by the method of series truncation
- Finite element solution of nonsteady incompressible viscous flow between two rotating concentric spheres
- The almost-rigid rotation of viscous fluid between concentric spheres
- Finite element solution of the Navier–Stokes equations in rotating flow
- On almost rigid rotations. Part 2
- A numerical study of the time-dependent viscous flow between two rotating spheres
- Viscous incompressible flow between concentric rotating spheres. Part 1. Basic flow
This page was built for publication: Finite element solution of nonsteady incompressible viscous flow between two rotating concentric spheres