Iwasawa theory of elliptic curves and Galois module structure
From MaRDI portal
Publication:1312788
DOI10.1215/S0012-7094-93-07118-9zbMath0802.11051MaRDI QIDQ1312788
Publication date: 15 December 1994
Published in: Duke Mathematical Journal (Search for Journal in Brave)
Tate-Shafarevich groupring of integers\(p\)-adic height pairingelliptic curve with complex multiplication\(p\)-primary component
Elliptic curves over global fields (11G05) Iwasawa theory (11R23) Integral representations related to algebraic numbers; Galois module structure of rings of integers (11R33)
Related Items
Abelian varieties and Galois module structure in global function fields ⋮ A geometric description of the class invariant homomorphism
Cites Work
- Infinite descent and \(p\)-adic heights over elliptic curves with complex multiplication
- Elliptic curves with complex multiplication and Galois module structure
- Elliptic functions and rings or integers
- Mordell-Weil groups and the Galois module structure of rings of integers
- \(p\)-adic \(L\)-functions and rational points on elliptic curves with complex multiplication
- The Galois module structure of certain arithmetic principal homogeneous spaces
- On the conjecture of Birch and Swinnerton-Dyer
- Abelian varieties and Galois module structure in global function fields
- On Taylor's conjecture for Kummer orders
- Arithmétique des courbes elliptiques et théorie d'Iwasawa
- An Orthogonality Relation on the Points of an Elliptic Curve
- Class invariants of Mordell-Weil groups.
- On the units of algebraic number fields
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: Iwasawa theory of elliptic curves and Galois module structure