On rational points of curves of genus 3 over finite fields
From MaRDI portal
Publication:1313223
DOI10.2748/tmj/1178225887zbMath0819.14007OpenAlexW2070761677MaRDI QIDQ1313223
Publication date: 31 August 1995
Published in: Tôhoku Mathematical Journal. Second Series (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.2748/tmj/1178225887
Rational points (14G05) Arithmetic ground fields for curves (14H25) Curves over finite and local fields (11G20) Finite ground fields in algebraic geometry (14G15)
Related Items (16)
Courbes de genre \boldmath3 avec \boldmath𝑆₃ comme groupe d’automorphismes ⋮ On the maximality of hyperelliptic Howe curves of genus 3 ⋮ Supersingular loci of low dimensions and parahoric subgroups ⋮ On maximal curves ⋮ Automorphism groups of superspecial curves of genus 4 over \(\mathbb{F}_{11}\) ⋮ On Curves with Split Jacobians ⋮ The existence of supersingular curves of genus 4 in arbitrary characteristic ⋮ Fully maximal and fully minimal abelian varieties ⋮ Jacobians in isogeny classes of supersingular abelian threefolds in characteristic 2 ⋮ Distributions of Traces of Frobenius for Smooth Plane Curves Over Finite Fields ⋮ Open problems in finite projective spaces ⋮ Unnamed Item ⋮ Maximal hyperelliptic curves of genus three ⋮ On the existence of superspecial and maximal nonhyperelliptic curves of genera four and five ⋮ Computational approach to enumerate non-hyperelliptic superspecial curves of genus 4 ⋮ A note on some Picard curves over finite fields
Cites Work
- Class numbers of positive definite ternary quaternion Hermitian forms
- Linear codes and modular curves
- Class numbers of definite unimodular Hermitian forms over the rings of imaginary quadratic fields
- Die Typen der Multiplikatorenringe elliptischer Funktionenkörper
- Die Anzahl der Typen von Maximalordnungen einer definiten Quaternionenalgebra mit primer Grundzahl
- Zur Theorie der hermiteschen Formen in imaginär-quadratischen Zahlkörpern.
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: On rational points of curves of genus 3 over finite fields