Nonparametric estimation of a regression function with dependent observations
DOI10.1016/0304-4149(94)90153-8zbMath0788.62038OpenAlexW1966499352MaRDI QIDQ1318337
Publication date: 27 March 1994
Published in: Stochastic Processes and their Applications (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/0304-4149(94)90153-8
independent observationscentral limit theorembandwidth selectionstrong uniform convergence rateMallows' criterionconvergence rate of asymptotic normalitylong range dependent observationsmodified Mallows' criterionperformance of nonparametric kernel regressionshort range dependent observations
Density estimation (62G07) Asymptotic properties of nonparametric inference (62G20) Central limit and other weak theorems (60F05) Nonparametric tolerance and confidence regions (62G15)
Related Items
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Nonparametric regression with long-range dependence
- Bandwidth choice for nonparametric regression
- Nonparametric curve estimation with time series errors
- On the asymptotic distributions of bandwidth estimates
- Asymptotic properties of nonparametric curve estimates
- Time series: theory and methods
- Bandwidth selection for kernel estimate with correlated noise
- Comparison of two bandwidth selectors with dependent errors
- Nonparametric regression analysis of longitudinal data
- Smoothing techniques. With implementation in S
- Kernel Regression Estimation Using Repeated Measurements Data
- How Far Are Automatically Chosen Regression Smoothing Parameters From Their Optimum?
- Two central limit problems for dependent random variables
- Nonparametric Estimation of a Regression Function: Limiting Distribution2
- Asymptotic properties of the periodogram of a discrete stationary process
- Nonparametric estimation of a regression function