Examples of compact sets with non-empty interior which do not admit a continuous linear extension operator for ultradifferentiable functions of Beurling type
DOI10.1007/BF01261364zbMath0808.46032MaRDI QIDQ1319590
Publication date: 9 March 1995
Published in: Archiv der Mathematik (Search for Journal in Brave)
Whitney jetsBeurling classes\(\omega\)-extension operatorclass of \(\omega\)-ultradifferentiable functions of Beurling typestrong weight function
Topological linear spaces of continuous, differentiable or analytic functions (46E10) (C^infty)-functions, quasi-analytic functions (26E10) Topological linear spaces of test functions, distributions and ultradistributions (46F05)
Related Items (4)
Cites Work
- Unnamed Item
- Unnamed Item
- Almost analytic extension of ultradifferentiable functions and the boundary values of holomorphic functions
- Continuous linear division and extension of \(C^\infty\) functions
- Extension of ultradifferentiable functions of Roumieu type
- On E. Borel's theorem
- Charakterisierung der Unterräume von \((s)\)
- Extension and lifting of Csup(infinity) Whitney fields
- Fortsetzungen von \(C^\infty\)-Funktionen, welche auf einer abgeschlossenen Menge in \(R^ n\) definiert sind
- Extension of ultradifferentiable functions
- Ultradifferentiable functions and Fourier analysis
- Whitney's extension theorem for ultradifferentiable functions of Beurling type
- Kriterien für die Existenz von Ausdehnungsoperatoren zu E(K) für kompakte Teilmengen K von R
- Linear partial differential operators and generalized distributions
- APPROXIMATE DIMENSION AND BASES IN NUCLEAR SPACES
- Linear Extension Operators for Ultradifferentiable Functions of Beurling Type on Compact Sets
- Charakterisierung der Quotientenräume von s und eine Vermutung von Martineau
- Continuous Linear Extension of Ultradifferentiable Functions of Beurling Type
- Analytic Extensions of Differentiable Functions Defined in Closed Sets
- Extension of C ∞ Functions Defined in a Half Space
This page was built for publication: Examples of compact sets with non-empty interior which do not admit a continuous linear extension operator for ultradifferentiable functions of Beurling type