Existence of weak solutions for a model of three-phase flow in porous media
From MaRDI portal
Publication:1320020
DOI10.5802/afst.770zbMath0790.76101OpenAlexW2319253169MaRDI QIDQ1320020
Publication date: 28 June 1994
Published in: Annales de la Faculté des Sciences de Toulouse. Mathématiques. Série VI (Search for Journal in Brave)
Full work available at URL: http://www.numdam.org/item?id=AFST_1993_6_2_3_337_0
well-posednessregularized problemdifferentiability conditionsemilinear elliptic-parabolic degenerate partial differential equations
PDEs in connection with fluid mechanics (35Q35) Flows in porous media; filtration; seepage (76S05) Multiphase and multicomponent flows (76T99)
Related Items
Incompressible immiscible multiphase flows in porous media: a variational approach, Homogenization of a three-phase flow model in porous media, On a fully nonlinear degenerate parabolic system modeling immiscible gas-water displacement in porous media, Degenerate two-phase compressible immiscible flow in porous media: The case where the density of each phase depends on its own pressure, Weak solutions for immiscible compressible multifluid flows in porous media
Cites Work
- Solutions fortes et comportement asymptotique pour un modèle de convection naturelle en milieu poreux. (Strong solutions and asymptotic behaviour for a natural convection problem in porous media)
- Compact sets in the space \(L^ p(0,T;B)\)
- Quasilinear elliptic-parabolic differential equations
- A parabolic-elliptic variational inequality
- Finite Element Methods for Navier-Stokes Equations
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item