Solutions to the quantum Yang-Baxter equation and the Drinfel'd double
From MaRDI portal
Publication:1320245
DOI10.1006/jabr.1993.1203zbMath0806.16043OpenAlexW2062000125MaRDI QIDQ1320245
Publication date: 19 April 1994
Published in: Journal of Algebra (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1006/jabr.1993.1203
quantum Yang-Baxter equationbialgebrafinite-dimensional quasitriangular Hopf algebraright \(H\)-comodule
Related Items
DEFORMATION COHOMOLOGY FOR YETTER-DRINFEL'D MODULES AND HOPF (BI)MODUL ES ⋮ Double construction for monoidal categories ⋮ Representations of crossed modules and other generalized Yetter-Drinfel'd modules ⋮ Generalized double crossproducts associated with the quantized enveloping algebras ⋮ Yetter-Drinfel'd categories associated to an arbitrary bialgebra ⋮ The category of Yetter-Drinfel'd Hom-modules and the quantum Hom-Yang-Baxter equation ⋮ Solutions to the Quantum Yang-Baxter Equation Arising from Pointed Bialgebras ⋮ Yetter-Drinfeld categories associated with a weak braided Hopf algebra. ⋮ The hopf modules category and the hopf equation ⋮ New types of bialgebras arising from the hopf equation ⋮ The FRT-type Theorem for the Hom–Long Equation ⋮ Higher conjugations and the Yang-Baxter equation ⋮ Modules over double crossproducts of skew-Hopf pairs ⋮ The Hom–Yang–Baxter equation and Hom–Lie algebras ⋮ A class of non symmetric solutions for the integrability condition of the knizhinik-zamolodchikov equation: a hopf algebra approach