Invariance principles for random walks on hypergroups on \(\mathbb{R}_ +\) and \(\mathbb{N}\)
From MaRDI portal
Publication:1322907
DOI10.1007/BF02214269zbMath0793.60006MaRDI QIDQ1322907
Publication date: 11 August 1994
Published in: Journal of Theoretical Probability (Search for Journal in Brave)
Bessel processBrownian motioncentral limit theoreminvariance principlepolynomial hypergroupSturm-Liouville hypergroup
Related Items (1)
An invariance principle related to a process which generalizes the \(N\)-dimensional Brownian motion
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- A note on property (T) of orthogonal polynomials
- Central limit theorems for random walks on \({\mathbb{N}}_ 0\) that are associated with orthogonal polynomials
- One-dimensional hypergroups
- Harmonic analysis on compact hypergroups
- Un théorème limite central dans un hypergroupe bidimensionnel. (A central limit theorem on a two-dimensional hypergroup)
- Moment functions and laws of large numbers on hypergroups
- Spaces with an abstract convolution of measures
- Stopping times and tightness
- The central limit theorem for Chébli-Trimèche hypergroups
- Random walks with spherical symmetry
- Domains of Attraction with Inner Norming on Sturm–Liouville Hypergroups
- Comportement asymptotique des marches aleatoires associees aux polynomes de Gegenbauer et applications
- Central limit theorems for a class of polynomial hypergroups
- Convergence of stochastic processes
This page was built for publication: Invariance principles for random walks on hypergroups on \(\mathbb{R}_ +\) and \(\mathbb{N}\)