Rank one elliptic \(A\)-modules and \(A\)-harmonic series

From MaRDI portal
Publication:1325141

DOI10.1215/S0012-7094-94-07321-3zbMath0807.11032OpenAlexW1501125363MaRDI QIDQ1325141

Greg W. Anderson

Publication date: 26 February 1995

Published in: Duke Mathematical Journal (Search for Journal in Brave)

Full work available at URL: https://doi.org/10.1215/s0012-7094-94-07321-3




Related Items

UNIFORMIZERS FOR ELLIPTIC SHEAVESTorsion points on Jacobians of quotients of Fermat curves and \(p\)-adic soliton theoryTwisted characteristic \(p\) zeta functionsA class formula for admissible Anderson modulesThe p-rank of the reduction mod p of Jacobians and Jacobi sumsOn the Stark units of Drinfeld modulesSpecial functions and Gauss-Thakur sums in higher rank and dimensionAn exterior product identity for Schur functionsValues of certain \(L\)-series in positive characteristicAlgebraic independence of values of Goss \(L\)-functions at \(s=1\)Algebraic relations among Goss’s zeta values on elliptic curvesMultizeta in function field arithmeticUniversal families of Eulerian multiple zeta values in positive characteristicSpecial functions and twisted L-seriesMultizeta values for function fields: A surveyDrinfeld moduli schemes and infinite GrassmanniansArithmetic of Gamma, Zeta and Multizeta Values for Function FieldsInterpolation of hypergeometric ratios in a global field of positive characteristicZeta-like multizeta values for higher genus curvesArithmetic of function field unitsInterpolation of numbers of Catalan type in a local field of positive characteristicIntegrable systems and number theory in finite characteristicGeneralized theta functions, Drinfeld modules and some arithmetic consequencesThe theta divisor and the Stickelberger theoremPower sums of polynomials over finite fields and applications: a surveyA calculation of \(L\)-series in terms of Jacobi sumsUnnamed ItemTensor powers of rank 1 Drinfeld modules and periodsSpecial \(L\)-values and shtuka functions for Drinfeld modules on elliptic curvesAn alternate approach to solitons for \(\mathbb F_q [t\)] ⋮ On special \(L\)-values of \(t\)-modulesUniversal Gauss-Thakur sums and \(L\)-series



Cites Work