A Poisson formula for Heisenberg manifolds
From MaRDI portal
Publication:1325152
DOI10.1215/S0012-7094-94-07303-1zbMath0803.58054MaRDI QIDQ1325152
Publication date: 19 December 1994
Published in: Duke Mathematical Journal (Search for Journal in Brave)
Related Items (7)
On the Poisson relation for compact Lie groups ⋮ Length minimizing geodesics and the length spectrum of Riemannian two-step nilmanifolds ⋮ The heat kernel and the spectrum of a class of nilmanifolds ⋮ Length spectra and \(p\)-spectra of compact flat manifolds ⋮ The minimal marked length spectrum of Riemannian two-step nilmanifolds ⋮ Riemannian nilmanifolds and the trace formula ⋮ The length spectrum of Riemannian two-step nilmanifolds1
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Isospectral closed Riemannian manifolds which are not locally isometric
- The spectrum of the Laplacian on Riemannian Heisenberg manifolds
- The spectrum of positive elliptic operators and periodic bicharacteristics
- Curvatures of left invariant metrics on Lie groups
- The length spectra of some compact manifolds of negative curvature
- Formule de Poisson pour les variétés riemanniennes
- Le spectre d'une variété riemannienne. (The spectrum of a Riemannian manifold)
- Correction to: Silberg' trace formua as applied to a compact riemann surface by H. P. Mckean, comm. pure appl. math. 25, pp. 225‐246,1972
- Length spectrum for compact locally symmetric spaces of strictly negative curvature
- Déformations isospectrales sur certaines nilvariétés et finitude spectrale des variétés de Heisenberg
This page was built for publication: A Poisson formula for Heisenberg manifolds