Hierarchies of higher order kernels
From MaRDI portal
Publication:1326328
DOI10.1007/BF01192560zbMath0795.62032MaRDI QIDQ1326328
Publication date: 13 September 1994
Published in: Probability Theory and Related Fields (Search for Journal in Brave)
projectionsvanishing momentsfunctional estimationdensity estimatesoptimality propertieshierarchies of higher order kernelsmultiple kernel method
Density estimation (62G07) Asymptotic properties of nonparametric inference (62G20) Nonparametric estimation (62G05) Optimality conditions (49K99)
Related Items
Multivariate local polynomial fitting for a probability distribution function and its partial derivatives∗, A simple recourse model for power dispatch under uncertain demand, A Review of Some Modern Approaches to the Problem of Trend Extraction, A Unified View of Nonparametric Trend-Cycle Predictors Via Reproducing Kernel Hilbert Spaces, Mass shifting roles of negative kernel mass in density estimation, Computationally efficient classes of higher‐order kernel functions, Correction locale de l'estimateur à noyau de la densité d'une loi de probabilité, A new set of asymmetric filters for tracking the short-term trend in real-time, Improving bias in kernel density estimation, Fast multivariate empirical cumulative distribution function with connection to kernel density estimation, On optimal kernel choice for deconvolution, Pointwise improvement of multivariate kernel density estimates., Asymptotic unbiased density estimators, Nonparametric kernel regression estimation near endpoints., Generalized jackknifing and higher order kernels, Quantile regression with censoring and endogeneity, L2Version Of The Double Kernel Method
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Smooth optimum kernel estimators of densities, regression curves and modes
- The double kernel method in density estimation
- Choice of kernel order in density estimation
- On nonparametric regression with higher-order kernels
- Weighted Local Regression and Kernel Methods for Nonparametric Curve Fitting
- Optimizing Kernel Methods: A Unifying Variational Principle
- Многочлены, ортонормальнье на вещественной оси с весом 335-1335-1335-1. Ы
- Improvement of Kernel Type Density Estimators
- Mean squared errors of estimates of a density and its derivatives
- Orthogonal polynomials
- On polynomial approximation with the weight 363-1363-1363-1