Uniform harmonic approximation on Riemannian manifolds
From MaRDI portal
Publication:1326656
DOI10.1007/BF02835948zbMath0806.31004WikidataQ115391513 ScholiaQ115391513MaRDI QIDQ1326656
Publication date: 18 May 1994
Published in: Journal d'Analyse Mathématique (Search for Journal in Brave)
Approximation by other special function classes (41A30) Potential theory on Riemannian manifolds and other spaces (31C12)
Related Items
Harmonic approximation on compact sets ⋮ Luzin-type harmonic approximation on subsets of non-compact Riemannian manifolds ⋮ Riesz-Martin representation for positive super-polyharmonic functions in a Riemannian manifold ⋮ A Runge theorem for subharmonic functions on Riemannian manifolds ⋮ On the controllability of the Vlasov-Poisson system. ⋮ Superharmonic extension and harmonic approximation
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Harmonic functionals on open Riemann surfaces
- Recherches axiomatiques sur la théorie des fonctions surharmoniques et du potentiel
- Approximation by harmonic functions of closed subsets of Riemann surfaces
- Localization in fine potential theory and uniform approximation by subharmonic functions
- Potentiel fin et algèbres de fonctions analytiques. I
- Simplicial cones in potential theory
- Classification theory of Riemannian manifolds. Harmonic, quasiharmonic and biharmonic functions
- Simplicial cones in potential theory. II: Approximation theorems
- Uniform approximation by meromorphic functions having prescribed poles
- Quelques propriétés des fonctions surharmoniques associées à une équation uniformement elliptique de la forme \(Lu =-\sum_ i {\partial\over\partial x_ i} \left(\sum_ j a_{ij}{\partial u\over\partial x_ j}\right) = 0\)
- Harmonic spaces and their potential theory
- Approximation et caractère de quasi-analyticité dans la théorie axiomatique des fonctions harmoniques
- Analytic capacity and rational approximation
- Finely harmonic functions
- Lectures on potential theory. 2nd ed., revised and enlarged
- Uniform Approximation on Closed Sets by Harmonic Functions with Newtonian Singularities
- Unique Continuation for Elliptic Equations
- A Runge Theorem for Harmonic Functions on Closed Subsets of Riemann Surfaces
- Existence of Biharmonic Green's Functions
- Approximation Harmonique Sur Les Surfaces de Riemann
- Uniform approximation on closed sets by solutions of elliptic partial differential equations
- Removable singularities of solutions of elliptic equations