A martingale proof of \(L_ 2\) boundedness of Clifford-valued singular integrals
DOI10.1007/BF01765857zbMath0814.42009OpenAlexW2085974926MaRDI QIDQ1327156
R.-L. Long, Garth I. Gaudry, Tao Qian
Publication date: 18 June 1995
Published in: Annali di Matematica Pura ed Applicata. Serie Quarta (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/bf01765857
boundednessCauchy principal value integralHaar functionsClifford algebra-valued martingalesClifford-Haar functionsClifford-valued \(T(b)\) theoremClifford-valued singular integralsLittlewood-Paley estimatespseudoaccretive weight
Singular and oscillatory integrals (Calderón-Zygmund, etc.) (42B20) Maximal functions, Littlewood-Paley theory (42B25) Clifford algebras, spinors (15A66) Martingales and classical analysis (60G46)
Related Items
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- A boundedness criterion for generalized Calderón-Zygmund operators
- Opérateurs de Calderón-Zygmund, fonctions para-accrétives et interpolation. (Calderón-Zygmund operators, para-accretive functions and interpolation)
- L'intégrale de Cauchy définit un opératuer borne sur \(L^ 2 \)pour les courbes lipschitziennes
- Clifford algebras, Fourier transforms and singular convolution operators on Lipschitz surfaces
- On convolution operators leaving \(L^{p,\lambda}\) spaces invariant
- Two Elementary Proofs of the L 2 Boundedness of Cauchy Integrals on Lipschitz Curves
- The Cauchy Integral, Calderon Commutators, and Conjugations of Singular Integrals in R n
- A Criterion for the Boundedness of Singular Integrals on Hypersurfaces
- Convolution Singular Integrals on Lipschitz Surfaces