Shrinking toward submodels in regression
DOI10.1016/0378-3758(94)90156-2zbMath0798.62077OpenAlexW2066877054MaRDI QIDQ1333134
Publication date: 13 September 1994
Published in: Journal of Statistical Planning and Inference (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/0378-3758(94)90156-2
shrinkage estimatorvariable selectionempirical Bayes estimationchoice of subspacechoice of shrinkage coefficientdata-adaptive selectiongeneralized ridge estimationnormal-equation approachordinary least- squares estimationsubspace- shrinkage estimationsubspace-ridge estimatorsubspace-Stein estimator
Estimation in multivariate analysis (62H12) Ridge regression; shrinkage estimators (Lasso) (62J07) Empirical decision procedures; empirical Bayes procedures (62C12)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Minimax ridge regression estimation
- Estimation of parameters in a linear model
- The restricted least squares estimator and ridge regression
- How Much Does Stein Estimation Help in Multiple Linear Regression?
- Combining Minimax Shrinkage Estimators
- Mean square error matrix comparisons of estimators in linear regression
- Ridge Regression and James-Stein Estimation: Review and Comments
- Ridge regression:some simulations
- Best Linear Unbiased Estimation and Prediction under a Selection Model
- Shrinking Towards Subspaces in Multiple Linear Regression
- Improved Estimators for Coefficients in Linear Regression
- Ridge Regression: Biased Estimation for Nonorthogonal Problems
- Some Comments on C P
This page was built for publication: Shrinking toward submodels in regression