Finiteness properties of Chevalley groups over \(\mathbb{F}_ q[t]\)
DOI10.1007/BF02772995zbMath0809.20034MaRDI QIDQ1335158
Publication date: 27 September 1994
Published in: Israel Journal of Mathematics (Search for Journal in Brave)
arithmetic groupsBruhat-Tits buildingprojective resolutionfinite presentationEilenberg-MacLane complexfinite set of generatorstype \(FP_ n\)simple Chevalley groupfiniteness lengthfinite \(n\)-skeletonfinitely generated \(\mathbb{Z}\Gamma\)- modulestype \(F_ n\)
Group rings of infinite groups and their modules (group-theoretic aspects) (20C07) Generators, relations, and presentations of groups (20F05) Homological methods in group theory (20J05) Discrete subgroups of Lie groups (22E40) Linear algebraic groups over global fields and their integers (20G30) Discontinuous groups of transformations (57S30) Groups with a (BN)-pair; buildings (20E42)
Related Items
Cites Work
- Finite presentability of S-arithmetic groups. Compact presentability of solvable groups
- Homological properties of certain arithmetic groups in the function field case
- Finiteness properties of certain arithmetic groups in the function field case
- Buildings of spherical type and finite BN-pairs
- Cohomologie d'immeubles et de groupes S-arithmétiques
- Homotopy properties of the poset of nontrivial p-subgroups of a group
- On the homotopy type of subcomplexes of Tits buildings
- Corners and arithmetic groups (Appendice: Arrondissement des varietes a coins par A. Douady et L. Herault)
- A note on quotients of real algebraic groups by arithmetic subgroups
- On some Bruhat decomposition and the structure of the Hecke rings of \(p\)-adic Chevalley groups
- Reductive groups over a local field
- Lectures on Chevalley Groups
- Finite presentability of arithmetic groups over global function fields
- Finiteness properties of groups
- Higher generation by subgroups
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item