Solving \((I-S)g=f\) when \(S\) is a generalized shift operator
From MaRDI portal
Publication:1335180
DOI10.1216/rmjm/1181072415zbMath0804.47014OpenAlexW1981680044MaRDI QIDQ1335180
Publication date: 28 September 1994
Published in: Rocky Mountain Journal of Mathematics (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1216/rmjm/1181072415
Weierstrass functionsgeneralized shift operatorfractal interpolation functions of Barnsleyweak Abel-like limits
Linear operators on special spaces (weighted shifts, operators on sequence spaces, etc.) (47B37) Equations and inequalities involving linear operators, with vector unknowns (47A50)
Cites Work
- On the functional equation \(1/p\cdot \{f(x/p)+\cdots +f((x+p- 1)/p)\}=\lambda f(\mu x)\)
- Fractal functions and interpolation
- On the distribution of values of sums of the type \(\sum f(2^kt)\)
- On the Functional Equation f(t) = g(t) - g(2t)
- The Equation (I - S)g = f for Shift Operators in Hilbert Space
- Sur une suite également répartie
This page was built for publication: Solving \((I-S)g=f\) when \(S\) is a generalized shift operator