Factorials and Stirling numbers in the algebra of formal Laurent series. II: \(z^ a - z^ b=t\)
From MaRDI portal
Publication:1336661
DOI10.1016/0012-365X(94)90238-0zbMath0805.05006OpenAlexW2294731123MaRDI QIDQ1336661
Publication date: 26 January 1995
Published in: Discrete Mathematics (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/0012-365x(94)90238-0
Stirling numbersumbral calculusBernoulli polynomialsformal seriesfactorialsbinomial seriesCatalan seriesdouble sum of powers
Umbral calculus (05A40) Bell and Stirling numbers (11B73) Factorials, binomial coefficients, combinatorial functions (05A10) Binomial coefficients; factorials; (q)-identities (11B65)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Sequences of binomial type with polynomial coefficients
- Zur Theorie und Anwendung Bernoulli-Nörlundscher Polynome und gewisser Verallgemeinerungen der Bernoullischen und der Stirlingschen Zahlen
- The algebra for formal series. II: Sheffer sequences
- Factorials and Stirling numbers in the algebra of formal Laurent series
- The umbral calculus
- Non-central Stirling numbers and some applications
- Recursive matrices and umbral calculus
- On the foundations of combinatorial theory. VIII: Finite operator calculus
- Interpolation and Combinatorial Functions
- Review of the stirling numbers, their generalizations and Statistical Applications
- Central factorial numbers; their main properties and some applications.
This page was built for publication: Factorials and Stirling numbers in the algebra of formal Laurent series. II: \(z^ a - z^ b=t\)