Geometric comparison of combinatorial polytopes
From MaRDI portal
Publication:1339395
DOI10.1016/0166-218X(94)90006-XzbMath0813.90094OpenAlexW2066580436MaRDI QIDQ1339395
Jon Lee, Walter D. jun. Morris
Publication date: 1 December 1994
Published in: Discrete Applied Mathematics (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/0166-218x(94)90006-x
Applications of graph theory (05C90) Special polytopes (linear programming, centrally symmetric, etc.) (52B12) Combinatorial optimization (90C27)
Related Items
Gaining or losing perspective, The volume of relaxed Boolean-quadric and cut polytopes, Min-up/min-down polytopes, Algorithmic and modeling insights via volumetric comparison of polyhedral relaxations, Using Two-Dimensional Projections for Stronger Separation and Propagation of Bilinear Terms, On convex relaxations of quadrilinear terms, Experimental validation of volume-based comparison for double-McCormick relaxations, Gaining or losing perspective for piecewise-linear under-estimators of convex univariate functions, Volume computation for sparse Boolean quadric relaxations, Gaining or losing perspective for piecewise-linear under-estimators of convex univariate functions, Computing the volume of the convex hull of the graph of a trilinear monomial using mixed volumes, Parsimonious binary-encoding in integer programming
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Stirling numbers of the second kind
- Two poset polytopes
- Subspaces with well-scaled frames
- Principles of combinatorics
- Central and local limit theorems applied to asymptotic enumeration
- Polytope Volume Computation
- Maximizing Submodular Set Functions: Formulations and Analysis of Algorithms
- Stirling Number Asymptotics from Recursion Equations Using the Ray Method
- Two Algorithms for Determining Volumes of Convex Polyhedra
- Spline Notation Applied to a Volume Problem
- Sur un probl?me de g?om?trie diophantienne lin?aire. I. Poly?dres et r?seaux.